职称:博士后
邮箱:whu_meijz@whu.edu.cn
岩土颗粒材料宏细观力学特性、库坝系统安全
2014.09-2018.06 新2会员手机登录网址大全 水利水电工程,本科
2018.09-2023.12 新2会员手机登录网址大全 水工结构工程,博士
2024.01-2024.05 新2会员手机登录网址大全,科研助理
2024.06-至今 新2会员手机登录网址大全,博士后
国家重点研发计划项目课题,中小流域堤坝群复杂险情防控和应急处置技术装备与材料,2022.11-2025.10,参与
国家自然科学基金面上项目,基于多源监测数据和智能算法的堆石坝变形预测,2022.01-2025.12,参与
第七届全国颗粒材料计算力学会议优秀报告奖(2024)
武汉大学研究生学术创新奖二等奖(2023)
武汉大学长江电力奖学金(2022)
(*表示通讯作者)
1.Mei, J., Ma, G.*, Liu, J., Nicot, F.*, & Zhou, W. (2023). Modeling shear-induced solid-liquid transition of granular materials using persistent homology. Journal of the Mechanics and Physics of Solids, 176, 105307. https://doi.org/10.1016/j.jmps.2023.105307
2.Ma, G., Mei, J.*, Gao, K., Zhao, J., Zhou, W., & Wang, D. (2022). Machine learning bridges microslips and slip avalanches of sheared granular gouges. Earth and Planetary Science Letters, 579, 117366. https://doi.org/10.1016/j.epsl.2022.117366
3.Mei, J., Ma, G.*, Tang, L., Gao, K., Cao, W., & Zhou, W. (2023). Spatial clustering of microscopic dynamics governs the slip avalanche of sheared granular materials. International Journal of Plasticity, 163, 103570. https://doi.org/10.1016/j.ijplas.2023.103570
4.Mei, J., Ma, G.*, Wang, Q., Wu, T., & Zhou, W. (2022). Micro- and macroscopic aspects of the intermittent behaviors of granular materials related by graph neural network. International Journal of Solids and Structures, 251, 111763. https://doi.org/10.1016/j.ijsolstr.2022.111763
5.梅江洲, 马刚*, 邹宇雄, 王頔, 周伟, 常晓林. (2022). 颗粒断层泥黏滑运动的研究进展. 中国科学:技术科学, 52(07):984-998.
6.Cao, W., Mei, J., Yang, X., Zhou, W., Chang, X., & Ma, G.* (2024). A network-based investigation on static liquefaction of sheared granular materials. Granular Matter, 26(3). https://doi.org/10.1007/s10035-024-01433-3
7.Zou, Y., Ma, G.*, Mei, J., Zhao, J., & Zhou, W. (2022). Microscopic origin of shape-dependent shear strength of granular materials: a granular dynamics perspective. Acta Geotechnica, 17(7), 2697–2710. https://doi.org/10.1007/s11440-021-01403-6
8.Wang, Y., Ma, G.*, Mei, J., Zou, Y., Zhang, D., Zhou, W., & Cao, X. (2021). Machine learning reveals the influences of grain morphology on grain crushing strength. Acta Geotechnica, 16(11), 3617–3630. https://doi.org/10.1007/s11440-021-01270-1
9.Zhang, J., Ma, G.*, Yang, Z., Mei, J., Zhang, D., Zhou, W., & Chang, X. (2024). Knowledge Extraction via Machine Learning Guides a Topology‐Based Permeability Prediction Model. Water Resources Research, 60(7). https://doi.org/10.1029/2024WR037124
地址:武汉市武昌区东湖南路8号电话:027-68772215学院邮箱:sdxy@whu.edu.cn
Copyright © 新2会员手机登录网址大全 - 新2会员登录入口